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ABSTRACT 

A numerical model for solution of the linear Boltzmann Transport Equation is 
formulated. By applying the same techniques used in the derivation of the analytic 
equation, a discrete analog of the Boltzmann equation is derived for a finite cell in 
phase space. Initially undetermined coefficients in the analog are determined by re- 
quiring the numerical formulation to include properties (e.g., particle conservation) 
of the analytic equation. Terms occurring in the finite-cell analog are defined, and 
two treatments of the angular dependence are illustrated. A discrete ordinates repre- 
sentation is derived based on a connected straight-line-angular representation. This 
formulation maintains optical reciprocity and may be generalized. 

The second portion of the paper describes the systematic derivation of difference 
relations necessary to complete solution of the numerical formulation. Both repre- 
sentation schemes, based on assumed forms of particle fluxes in the cell, and char- 
acteristic schemes are examined. Difficulties encountered in extrapolations made by 
the use of representation schemes are clarified, and insight is gained for methods that 
can be used to prevent flux oscillations in numerical calculations. 

INTRODUCTION 

The linear Boltzmann transport equation [l], which describes the transport 
of neutrons or photons through matter, does not readily yield to analytical solu- 
tion. Although the method of singular integral equations introduced by Case [2] 
has been extended to curved one-dimensional geometries [3], at present there are 

* This work was performed under the auspices of the U.S. Atomic Energy Commission. 
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no analytic solutions for finite two- or three-dimensional geometries. Such anal- 
ytic solutions as exist are useful primarily to provide standards for direct numeri- 
cal solution, because the analytic solutions require comparable numerical effort 
to evaluate and are not nearly as flexible as direct-solution procedures for solving 
complex problems. But, other than in one-dimensional geometries, there are no 
such standards available and direct numerical solution proceeds in relatively un- 
charted territory. This lack of mathematical guidance is regrettable, for when 
solution methods are proposed, errors cannot be analyzed and one is reduced to 
comparing results from what may be equally imprecise algorithms. In this paper 
we describe procedures for numerically solving the Boltzmann equation. In for- 
mulating these procedures we attempt to compensate for the lack of analytic 
solutions by making maximum use of the physics that is contained in the Boltzman 
equation. We insist, as a fundamental principle, that the numerical approxima- 
tion, or finite-cell analog, to the analytic equation be based on the same physical 
properties as the analytic equation. For instance, the Boltzmann equation is a 
statement of particle conservation; therefore numerical approximations should 
also conserve particles, a principle that is sometimes [4] overlooked in an attempt 
to find more accurate algorithms. As another example, if the equation adjoint 
to the Boltzmann equation is to be solved numerically, then it is desirable that 
the numerical formulation of the adjoint equation be adjoint to the numerical 
formulation of the direct equation [5]. 

In this paper we concentrate on the treatment of the divergence operator of 
the Boltzmann equation and on the difference relations necessary to solve the 
resulting formulation. Elsewhere [6, 71 we have described symmetry restrictions 
on angular quadrature set which are necessary to ensure particle path (“optical”) 
reciprocity. To simplify the discussion that follow, we restrict our attention to the 
monoenergetic time-independent Boltzmann equation. In general problems, 
energy dependence has been treated successfully by the multigroup approxi- 
mation [5], and time dependence can be handled by simple extension of the dif- 
ference schemes described below. Although we are interested in general geometries, 
we frequently examine the equation in one space dimension for the sake of sim- 
plicity. 

We first formulate an analog of the analytic Boltzmann equation for a finite 
cell in phase space, reasoning from the same principles which lead to the analytic 
equation. We then examine various assumptions relating to the angular variable. 
As one example of such assumptions we derive the equations for a connected 
straight-line representation of the angular variable that was used in the original 
S,, method [8]. This original method was set aside in favor of an approach closer 
to that of Wick and Chandrasekar [9] because it did not preserve optical recipro- 
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city, but we show this difficulty can be overcome, thus making feasible very gen- 
eral formulations of the Boltzmann equation. As another example, we give the 
conditions necessary for our numerical approximations to the Boltzmann equa- 
tion to yield the solutions of the diffusion approximation to the transport equation. 

In the second portion of the paper we examine the problem of determining the 
additional approximations, called difference relations, which make possible solu- 
tion of the numerical Boltzmann equation. We first examine the problems en- 
countered by using relations based on locally smooth behavior of the flux and 
then turn to formulations derived from the integral form of the analytic Boltz- 
mann equation. These formulations not only make possible the systematic deri- 
vation of more general and, hopefully, more accurate approximations, but they 
provide guidance for meaningful recipes with which, for example, negative fluxes 
can be prevented. Both midvalue (diamond difference) and corner-point (central 
difference) schemes are examined. 

The methods described here lead to discrete ordinates equations for finite 
cells in phase space. The main effect is that a single, complex equation is reduced 
to a system of simpler equation, the ray equations, in which the size of the system 
is related to the order, n, of approximation. It is also possible to formulate dis- 
crete ordinates equations equivalent to moments equations which approximate 
the Boltzmann equation. This approach, beginning from a general moments 
equation approximation [lo, 111, seems promising and may be explored in a 
future paper. 

FORMLUATION OF A DISCRETE APPROXIMATION TO THE BOLTZMANNEQUATION 

The monoenergetic time-independent linear Boltzmann transport equation 
can be written 

17 * QN(r,s2) + a(r)N(r,sa) = S(r,Q) (1) 

where r is the particle position vector and Q is a unit vector in the direction of the 
particle motion. The particle flux (particle speed times particle density) is denoted 
by N, S represents particle sources, and 0 is the macroscopic cross section for 
particle collisions. Equation (1) is a detailed statement of particle conservation 
in an infinitesimal volume of phase space, with losses due to neutron streaming 
(leakage), V - QN, and collisions, UN, being balanced by sources, S. In general 
problems, S may be composed of components proportional to N (scattering or 
neutron fission) as well as sources independent of N, Here we do not specify S 
further, but refer the reader to Reference [5] for a detailed discussion of the nu- 
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merical treatment of scattering, fission, and independent sources. It should be 
noted that although we have assumed a monoenergetic problem, Eq. (1) is also 
the equation solved in each group of a multigroup calculation where, even if S 
depends on fluxes in other groups, it is assumed known for calculations within 
the groups. 

The fact that Eq. (1) is a conservation relation has several ramifications that 
are useful in formulating numerical approximations. First, when the equation 
is integrated over all solid angles, the neutron balance equation is obtained: 

17 * J(r) + a(r)fl(r) = s(r) (2) 

where J is the current 

fl is the scalar flux 

J(r) = jGlZN(r, sZ)dsZ , 

fV = J N(r, S2)dQ , 

(3) 

(4) 

and s is a similar average of S(r, Q). When (2) is integrated over a finite volume 
V, with surface area A, the balance of particles is clearly evident: 

j, J . dA + jvaRdV = j,“dV (5) 

with losses due to flow through the surface plus collisions in the volume-balancing 
sources in the volume. When we write a numerical approximation to (1) we insist 
that it satisfy relations analogous to (2) and (5); that is, we write the numerical 
approximation in conservation form. l In this fashion we develop a numerical 
equation analogous to the conservation form of the Boltzmann equation. For 
instance, in one-dimensional spherical geometry, N and S are assumed to depend 
only on the radial coordinate I and the cosine ,D = S2 . e, where e, = r/r. Then the 
analytic form of (1) can be written 

dN 
lL’ dr + 

(’ T “) % + aN(r, p) = S(r, p) . 

While this equation can be integrated to give a balance equation, the same is not 

1 The imuortance of including conservation relations in numerical approximations was first 
noted by &x [12] in the hydrodynamics equations. Strictly speaking,-i7) and (8) should be 
multiplied by r2 so that the coefficient of each derivative is independent of the variable being 
differentiated. 
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usually true of numerical approximations to this form of the equation. The desired 
conservation form is 

which, when integrated over the unit sphere of directions with (- 1 _( ,U 5 l), 
gives 

1 a(rzz> 
7-F 

+aR=S (8) 

as a specific form of (2) with Z = J ’ e7 . Notice that the angular derivative 
vanishes in this integration. Because the orientation of the angular coordinate 
system is a function of position in curved geometry, a particle changes angular 
coordinates as it moves through the system. The angular derivative in (7) provides 
a mechanism for this directional transfer, and the vanishing of the term in passing 
from (7) to (8) shows that this process has no net effect on particle balance. 
This, then, is another useful condition to impose on any numerical approxima- 
tion to (1). 

Integrating Eq. (8) over a finite volume 0 _( r ( a with dV = 4m2dr gives 
as in (5) 

r=a 
r2Z I s r=O + 1 

r2&dr = 
i 
a 

r2Sdr , 
0 

where r2Z contributes only as the flow through the system boundaries. 
Finally, if N is constant, (1) shows that UN = S so that in this situation the 

derivative terms of (7) must and do cancel identically. Thus, when (1) is approxi- 
mated numerically, this property should be maintained. 

To recapitulate, when Eq. (1) is formulated for numerical solution, we insist 
that the approximation express neutron conservation for a cell in phase space 
in a manner such that 

(a) angular integration results in a cell balance and a zero net flow due to 
angular redistribution, 

(b) spatial integration results in a balance statement involving boundary 
currents only, 

(c) when N is constant, the approximations to the derivatives of the divergence 
operator are such that they cancel identically. 

We now formulate an approximation which incorporates these properties of 
the Boltzmann equation. Rather than attempt trial and error, we insert unspe- 
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cified constants in the formulation and determine these constants so that the above 
conditions are satisfied. We restrict our attention to one-dimensional spherical 
geometry, but adopt a notation which permits generalization to other geometries 
and more dimensions. We distinguish between noncentered subscripts (i and i + 1, 
m - 4 and m + 4) and centered subscripts (i + + or m). The noncentered sub- 
scripts refer to specific values of the independent variable (ri or ,unz+ilZ), but the 
centered subscripts refer to averages over the range of the independent variables 
and not to specific values of the variables. 

Consider the phase-space cell of Fig. 1 which is applicable to the (r, ,u) geometry 

* Wm 

1_ m-- : 

i i+l 

FIG. 1. 

of Eq. (7). In spherical geometry, the area of the cell face at I = ri is 4nri2 = Ai . 
Similarly, the area of the face at r = ri+l is Ai+l = 47cr~,, and the volume of the 
cell is Vi+,,, = 4n($+, - ri3)/3. We define the average flux on the cell face at 
r = ri that is in the direction range 2w, = ,u~+.~,~ - ,+-I,2 about an average 
cosine pu, to be Ni,,, . The similar flux at r = ri+l is defined to be Ni+l,m. . In these 
terms, if ,uu, is positive, the net loss from the vertical faces of the cell is the number 
that flow out of the cell through the right face minus the number that flow into 
the cell through the left face: 
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In an analogous fashion we define the average fiux at ,u = pu,+,!, in the range of 
r between ri+l and ri to be Ni+1/2,m+1/2 and represent the net number of particles 
leaving the cell by passing through the horizontal faces by 

2cr N m+1/2,i+1/2 m+1/2,i+1/2 -22a _ m l/2,2+1/2 N m-1/2,i+1/2 9 (11) 

where the coefficients rr are as yet unspecified. Next, assuming the collision cross 
section is constant within the cell, we define the average number of particles re- 
moved from the cell by collisions to be 

2w o. V N. 112 a+112 2+1/2 2+1i2.m . (12) 

Similarly, the average number of particles produced in the cell by sources is 

2wmvi+li*Si+l/2,m * (13) 

Combining (10) through (13) we have a statement of neutron conservation for 
the finite cell: 

w(Ai+lPmNi+l - hPu,Ni) + ~m+l/2Nm+u2 - CX,-~,~ N,-,,, + wcr VN = w VS. (14) 

In writing Eq. (14) we have dropped centered subscripts which refer to averages 
over faces or volumes. Except in situations which require emphasis we hence- 
forth adopt this convention. Equation (14) corresponds to Eq. (7) multiplied 
by 4nr2drdp - dVdQ/2n. 

We now determine the a-coefficients in accordance with the criteria established 
above. First, in the angular integration of Eq. (14), the a-terms should vanish. 
That is, the m sum of Eq. (14), which is a discrete angular quadrature, should 
give 

where2 

Ai+,li+, - A<Zi + u~TJ’ = SV) (1% 

AI 

Ii = 1lc2;_lWmPmNi,m 9 

fli+112 = Z wmNi+llz,m > 
m=1 

si+l12 = C WmSi+l12,m 3 
m=l 

(16) 

B The factor of two included in the definition of w in effect normalizes these integrals, e.g., 
I = I’-1 ,uNdp/Z. 
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in analogy to Eq. (8). In these terms the discrete angular quadrature set consists 
of M direction cosines,3 ,uu, , with an equal number of associated weights w,, . 
In order that Eq. (15) be valid it is necessary that 

This can be accomplished independently of M by choosing c11,2 = a.M+1,2 = 0. 
Next, it is a simple exercise to verify that the volume integral, that is, the i sum, 

of (15) involves only boundary values of the currents. 
Finally, when all fluxes in (14) are constant and a/V = S, the two terms ap- 

proximating the divergence operator should cancel which gives 

~Wbfl/Z - %-l/Z = - w4L - Ai). (18) 

Given the w’s and ~1’s and the initial condition a1,2 = 0, Eq. (18) determines the 
cc recursively. Because c1Au+1,2 is also zero, the left-side m-sum of (18) vanishes 
which implies that the right side sum must also vanish. That is, we must have 

(19) 

which imposes a mild restraint on the quadrature coefficients. Equation (19) is 
satisfied identically by symmetric (in this case with respect to p = 0) sets needed 
to preserve optical reciprocity. With symmetric sets, the a-coefficients are positive 
and symmetric; and oM+1,2 is in fact zero, provided that directions are ordered 
so that m = 1 corresponds to the most negative direction cosine and increasing 
m index corresponds to a monotone increase of direction cosine. 

Except for the restriction of (19), and the requirement that the angular quadra- 
ture weights sum to one-half the length of the integration interval, the formulation 
of (14) imposes no conditions on the quadrature set. It has been found useful 
to require, in the limit of linearly varying angular flux, N(p) - N + 3,uI, that the 
formulation of (14) yield the diffusion theory equations. That is, in this limit, 
when (1) is multiplied by 51 and integrated over dL?, the result can be expressed 
[l] in terms of equations relating derivatives of the flux, the current, and the 
linearly anisotropic part of the source. Corresponding to Eqs. (7) and (14) these 
current equations are, respectively, 

S In one-dimensional plane or spherical geometry M = n of the S, discrete ordinates schemes. 
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and 
:(Ai+i + Ai) (ls,,, - &, + 3aVZ = 3Vs, (21) 

where S, is the linearly anisotropic component of S. It can be shown [5] that, 
provided 

.I! 
z wnAnz=+-, 
nt=l 

this property of the analytic equations is preserved by 
of (14). 

DEFINITIONS OF THE FLUXES IN THE DISCRETE 

(22) 

the discrete formulation 

FORMULATION 

So far, we have not defined the fluxes that occur in Eq. (14). Basically, the dis- 
crete form of the transport equation is obtained by averaging the analytic equa- 
tion over a finite cell in phase space, and therefore the fluxes in (14) can be de- 
fined in terms of ratios of definite integrals. We illustrate by averaging the analytic 
equation for a one-dimensional sphere. Multiplying (7) by 4nr2drdp and integrat- 
ing we have for the first term 

where we have used our previous definition of Ai and written N,+~(,u) for N(r,+r ,,u). 
We now see that, if we let 

s :“_:;: ,uNiCu>dp = 2wmtr,Ni,m for i or i + 1, 
m 

Eq. (23) is the same as (10). We therefore have 

(24) 

(25) 

for the average flux at left face of the cell in Fig. 1. The average clearly depends 
upon the choice of the angular quadrature, but such a definition permits y, to be 
arbitrarily selected. 

3P 
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Integration of the second term of (7) over the finite cell gives 

where we have written N,,,,,(r) for N(r, ,L+&. Comparing (26) to (1 l), we 
identify 

2a m*1/2,i+li2 N mill2,i+ll2 -- - 47e - luG*1,2 > 1:: rNm,lj2(rVr (27) 

thereby defining 

4n(l - P~*1,2 > j: rN,,+ll&>dr 
N mf1/2,i+1/2 = 2cY (28) 

naf1/2,i+1/2 

From the definition (18) we see that all the a-coefficients are proportional to 
Ai+l - 4 = 44rt+l - ri”>. Writing %~/~,i+~/~ = (Ai+ - 4h&f1,2,i+1,2 , we 

see that the definition of Eq. (28) can be written as 

(1 - ,&*1/z > j: rNm,l,2(rPr 

N mf1!2,i+1/2 = -. (29) 
4Bm~1/2,w2 I :’ rdr 2 

Finally, for the third term of (7), we identify with (12) to find 

which defines 

(31) 

While the definitions of (25), (29), and (31) apply to one-dimensional spherical 
geometry, similar definitions can easily be found for other geometries. 
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CONSISTENCY OF THE DIFFERENCE EQUATION 

With the definitions of Ai and Vi+1,2 that we have used, we have a discrete 
analog of Eq. (7). Hence we should be able to obtain (7) from (14) in the limit of 
small intervals as 2w --t dp and ri+l - ri -+ dr. Examining Eq. (18) we see that 

lim ~,+1/2 - ffm-II2 da 

2w+d/i 2w =3jY= 
-/I &4i+l-AJ 

[ 1 . (32) 

Integrating this equation gives 

a = (constant - 4 p2)[B (Ai+1 - A,)]. (33) 

Since 01 must vanish at both ends of the direction range the constant is +. In the 
same vein, 

lim 2~ N m+1/2 m+1/2 

2w+d&4 

2~2rr,-,,2N,l,2 =~ = 'i+l - 'i a[(1 ~~2)N] 

2 
(34) 

by using Eq. (33). Dividing Eq. (14) by WV thus gives, as 2w + d,u and p., +p, 

%4r~+lNi+l - ri2Nd W+, - 
(r9+1 + vi+l + ril)(rifl - ri) + W-B+, 

ri2) a[(1 - iu2Wl + aN = s 
- ri3) aP 

, 
c351 

which, as ri+l - ri -+ dr and rifl + ri -+ r, becomes (7). 
We thus have derived a neutron-conserving approximation that is simple and 

that reduces to the analytic equation in the limit of small interval sizes. Equation 
(14) is quite general and can be used as a transport equation for the common 
one-dimensional geometries simply by defining Ai and Vi+1,2 properly. For 
example, in plane geometry, Ai+r = Ai = 1, and the terms in 01 vanish. In cyl- 
indrical geometry it is necessary to treat both components of G!, but Eq. (14) 
can still be used by careful ordering of the angular quadrature set [S]. Any two- 
dimensional geometry that is curved in at most one direction, e.g., (r, z) and 
(r, 6) cylindrical or (x, y) rectangular geometries, can be treated by inserting a 
term 

in Eq. (14), where Nj+l is an abbreviation for Ni+l,2,j+1,m and all fluxes depend 
on the j subscript. The Bj are area elements of the cell faces perpendicular to 
the j direction and 7 is a direction cosine similar to p. For instance, in (x, y) 
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geometry, 7 = Q . e, . The absence of curvature in the j direction implies that 
Bj+l = B, . In the same fashion, (14) can be extended to three-dimensional geo- 
metries. If the geometry is curved in more than one direction, another curvature 
term is added and the curvature coefficients determined exactly as the (Y coeffi- 
cients. 

It is worth noting that the rw-coefficients provide a minimal direction coupling 
of fluxes. In discrete ordinates equations that are equivalent to the spherical har- 
monics equations [13], all the directions are coupled by a directional transfer ma- 
trix, a situation which is difficult and laborious to treat numerically. In the above 
derivation of the a-coefficients we used a number of undetermined coefficients 
just sufficient to be determined by the conditions imposed, but the use of more 
general assumptions is not precluded. 

AN ALTERNATE FORMULATION OF A DISCRETE APPROXIMATION 

We refer to the above formulation, in which the position of the direction cosine 
within the direction interval is unspecified, as the general discrete S,(GDS,) 
method. This approach is used in the DSN codes [14], but in these the treatment 
of the curvature terms is somewhat different. Curvature coefficients defined by 
(18) and the GDS, method are used in more recent codes, e.g., DTF-IV [15]. 

An alternate approach is possible; ,u may be specified to be p = &,+,,, 
+ ,+-& and an intermediate N determined on the basis of some assumed var- 
iation of N with respect to ,U in Eq. (24). We illustrate the possibilities by de- 
veloping a consistent linear S, (CL&) method in which the angular dependence 
of N(U) in (24) is represented by connected straight-line segments. This type of 
representation was originally used in the first [8] S, formulation which we here 
refer to as the linear S,(LS,) formalism. This LS, development, although found 
to be very accurate in homogeneous systems, was replaced because of several 
disadvantages compared to the GDS, method. Perhaps most importantly, the 
method failed to preserve optical reciprocity. This difficulty was traced to the fact 
that the method consists of a nonsymmetric angular quadrature [7]. In addition, 
the method required recursions with more terms and proved difficult to generalize 
to multidimensional geometries. These shortcomings are overcome by the CL&, 
formulation described here. 

A linear (in ,u) function that assumes the value N,+,,,(r) at ,u = ,u~+~,~ and the 
value N,-,,,(r) at ,u+~,~ is given by 
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If this function is evaluated at I = ri , it assumes the corner values Ni,m*llz on 
the left side of Fig. 1. For this function the integral average of Eq. (24) is 

where 

In (14), by letting 

for 

Pu,Ni,m = PNi,m+l/~ + qN<,m-l/z 

iori+l 

(40) 

and 
2Nm+m,i+1,2 = Nm+w,i + Nm+m,i+~ ; (41) 

the LS, equations for spherical geometry can be obtained [16]. Equation (41) is 
consistent with the assumption of a constant or linear flux along the top and bot- 
tom faces of the cell of Fig. 1. 

Instead of following this procedure we use only (40), substituting in (14) to 
obtain 

WP(-4i+,K+,,rn - AiNi,m) + z k+l(Ni+l,m+l/z - Ni+l,m-4 

- z 4(Ni,m+l/2 - 

(42) 

Ni,~--l/2)+Ol~+1/2N~+1/2 - ~~-wJL-I/z+~NVW = SVw, 

where 

and 

p = HPm+l,B + Pm-l/2) (43) 

Ni,m = &(Ni,rn+~,~ + Ni,,-,,,) for i or i + 1. (44) 

To eliminate the unwanted corner unknowns from (42) we make the expansion 
consistent with the assumed linearity of the angular flux, 

Ni,m+tlln = iSi + 3~ m*ljzIi for i or i + 1 ; (45) 

that is, we assume that the angular flux is adequately represented by the first 
two terms of a Legendre polynomial expansion. If Eqs. (22) and (19) are satisfied, 
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(45) is consistent with the definitions of (16) where fl is the scalar flux and I 
is the current. Applying (45) to (42) we obtain 

yw4+1Ni+1 - AiNi) + W3(Ai+&+, - Aili) 

+a N 
(46) 

m+1/2 m-t1/2 - am-~,2Nm-1,2 + oNVw = SVw , 

which we call the CL,!& equations. Note that the additional term in (46) is a spatial 
derivative of the current which measures whether a cell is producing or absorbing 
particles and that the term is proportional to w3 which becomes quite small as 
the direction mesh is refined. In order that (46) satisfy the balance equation (15) 
we must define 

.lf .%I 
4 = Z wm,4nNim + 4 22 w,,3 ; (47) 

?n=l rn=l 

that is, in terms of p, the current is given by 

(48) 

Provided a symmetric quadrature set is used, it is not necessary to change the 
definition of the or-coefficients, for in the limit of constant flux, I, as given by (48), 
vanishes. Thus, the o-coefficients are defined by (18) with p replacing ,u. 

It can be shown b e  shown s 0 6 7 1 1 3 . 5   T D  3   T r  - 0 . .  ( c a n  )  T j 
 0   2 3  , u . n  s 0 6 1 5 . 3 5  3 3 . 3 0 0 3  0  0 f 0 . .  0 u r 7 1 9 1 5  T D  3   5 ( 4 6 )  reduces to the diffusion equations in the limit of slowly 
varying angular flux. In particular it is necessary that, similar to (22), 

cw,pm2 + g Izw,3 = +. 

With the above definitions, (46) is a neutron-conserving formulation of the 
Boltzmann equation that incorporates a connected straight-line angular repre- 
sentation, and yet may be used with an arbitrary, symmetric angular quadrature 
set that satisfies (49). It can be shown [16] that, for two directions, the boundary 
condition of zero net inflow applied to (46) corresponds to the current-over-flux 
condition I/N = il which is the same as the Double P,, ratio. In general, boundary 
conditions are applied to the p-weighted flux (40), which in the CL& case is 
,iiNm + w2Z. 

Equation (46) can be generalized, in the same manner as (14), to two- and 
three-dimensional geometries and hence this difficulty in the original LS, for- 
mulation is overcome. Instead of the four corner fluxes of (42), (46) contains 
only the two currents. However, since the currents depend on all angular fluxes, 
an iterative solution is implied. That is, currents cannot be computed until all 
angular fluxes are calculated, and, hence, currents will depend on previous in- 
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formation. Normally, S also must be recomputed iteratively so that no extra 
iterative effort is required. In fact, as described below, solution of (14) or (46) 
is facilitated by approximations which introduce the current, I. 

The above GDS, equations illustrate the use of the integral of (24) to formulate 
an approximation to the transport equation. It should be clear that much more 
general assumptions are possible both in (24) and (28). Any such assumptions 
used in these averages (or the averages appropriate to the geometry considered) 
will satisfy the zero divergence condition provided the assumed forms reduce to 
a constant when the fluxes in the representation are a constant. For example, in 
(37) if the two fluxes on the right are a constant, then N(r, ,u) is constant. 

It is worth noting that Eq, (42) can be derived in another manner. The finite- 
cell formulation is, in the limit of small w, , given by 

Equation (42) can be formed by substituting (37) in this equation and integrating 
over the (,u+~,~, ,LL~+~,~) interval. 

SOLUTION OF THE DISCRETE FORMULATION OF 

THE BOLTZMANN TRANSPORT EQUATION 

The equations derived in the preceding section contain more unknowns than 
there are determining relations. For instance, assuming that ,u is positive and that 
one is preceding in order of increasing m index, Ni and Nm--1,2 can be assumed 
known from boundary conditions or calculations in adjoining cells, but N, Ni+r 
and %+ll2 are unknowns. The equations necessary to determine these unknowns 
are called difference relations. In this section we review the standard difference 
relations that have been used and discuss alternate approaches to formulating 
difference relations that have been motivated by shortcomings of the standard 
relations. Again we emphasize use of properties of the analytic transport equation. 

Some of the methods described below have been carefully considered [17] 
in one-dimensional geometries. We are primarily interested in methods applicable 
to two-dimensional geometries. Our interest is motivated by the poor performance, 
in certain two-dimensional problems, of difference relations which seem to be 
entirely adequate in one dimension. We sometimes illustrate points in one-di- 
mensional plane geometry for which a systematic treatment is possible in terms 
of tabulated approximations to the exponential function. However, such a treat- 
ment is not possible in general geometries, and here our discussions are explora- 
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tory. Similarly, we do not attempt to give error estimates for the various difference 
schemes proposed below. It is our feeling, based on computational experience, 
that such estimates are of less relative importance within the context of finite-cell 
equations which correctly incorporate basic physical principles. Nevertheless, 
one may want to know the effect, for a given difference relation, of refining spatial 
or angular quadratures. Such effects are most conventiently determined by solving 
a few typical problems for a progression of interval sizes. In one-dimensional 
plane geometry it can be shown, by comparing analytic solutions of the difference 
equations to analytic solutions of the transport equation in some simple problems, 
that the error in using the diamond relations described below is proportional to 
a_lx unless the weights are equal when the error is proportional to (o~x)~. In the 
same situation, the methods based on the integral equation also have errors pro- 
portional to (alilx)“. Here /lx is the (uniform) mesh spacing xi+1 - xi . 

A midvalue or diamond difference scheme is a set of difference relations which 
involve function values along the sides of a mesh cell; a corner-point or central 
difference scheme is a set of difference relations which involve function values at 
the corners of a mesh cell. Both usually also involve function values over the 
interior of a cell. Depending on how the relations are derived we distinguish be- 
tween representation schemes, based on an assumed behavior or form of N and S 
over the cell, and characteristic schemes based on assumed forms for N and S 
and the physics of flow within a cell. In either case, additional degrees of freedom 
can be obtained by introducing weights on the function values. If the solution of 
the Boltzmann equation happen to possess the properties assumed, then no ap- 
proximation is made in using the difference relations; the greater the disparity 
between the actual solution and the assumed properties, the greater the error 
that is made. Although certain of the assumptions that are made in deriving dif- 
ference relations are consistent with assumptions made in formulating the transport 
equation, all of the difference relations displayed below may be used with any of 
the above formulations. 

A set of diamond difference equations based on an assumed smooth behavior 
of the underlying function is the following: 

N = UN<+, + (1 - a)Ni , lu>o, 

N = (1 - u)N~+~ + aNi , lu<o, (50) 

N = bNm+,,z + (1 - b)N,-,,z , 

where a and b are constants on the interval [g, 11. The above relations are designed 
for extrapolating Ni+l when ,u > 0, Ni when ,u < 0, and N,+l,, for all p. When 
a = b = 4 the equations, which are the same for all p, can be pictured as a plane 
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surface passing through the fluxes at the midpoints of the cell boundaries in Fig. 1. 
If a = b = 1, the so-called step-function difference equations are obtained. 
These expressions equate the cell-centered fluxes to appropriate boundary fluxes. 

If we suppose that ,LL < 0 and that we are proceeding in the direction of in- 
creasing m index, then (50) can be used to eliminate Ni and N,,,,, from (14). 
By solving the resulting equation for N we obtain 

N = 1 P 1 Ni+lKl - a)Ai + a&+11/a + N,-,,,t(l - bbm+l,z + ba,-,,,l/bw + SF’ 
I P I &la + a m+mW + aV (54 

When p > 0 the appropriate equation is obtained by interchanging Ai+l and Ai and 
Ni and N,+l in (51). Assuming that the source is known, from a previous iteration 
if necessary, N can be calculated from (51) and (50) can be used to extrapolate 
Ni+l or Ni and N,+liz . Thus, Eq. (51) can be used for a recursive solution for all 
directions and space cells. Boundary values furnish starting values for Ni (or 
Ni+& but some initial value must be found for N,-l,Z for m = 1. In practice this 
is accomplished by including in the direction set unweighted “singular” directions 
[5] (,u = - 1 in spherical geometry) in which there is no angular redistribution. 
Then with w  = 0, the cell in Fig. 1 has zero height so that Nnz+ilZ = N,-l,, and, 
from (50), both equal N. This result and the fact that CX~+~,~W = - ,u(A$+~ - Aj) 
for these directions provide enough information to solve (14). The resultant ex- 
pression is simply (51) without the term in N,-,,, in the numerator and with 
b = 1 in the denominator. The disadvantage of such procedure is that, in cyl- 
inders and many other geometries, there may be many such directions and the 
time spent in calculations to provide starting values may be excessive. 

One way to eliminate the need for starting values is to use the step-function 
approximation, b = 1, for the angular difference relation. Then, because al,2 = 0 
by definition, the coefficient of Nnz-1,2 in the numerator of (51) vanishes and no 
starting value is needed. 

Another possibility is to assume that (45) holds for ,u = ,u~ . Then the cell 
boundary flux is approximated by 

N m+1i2 5 N, + -$$ c%n,l,, - P,) = Nm + 3G4n+,,2 - iuwd. (52) 

The use of this approximation for the angular fluxes Nm+ilZ and Nnc--1,2 in Eq. (14) 
produces the recursion4 

4 When this equation is solved, values of Z from a previous iteration are used. An iterative 
process is usually necessary, in any case, to allow for a dependence of S on N, e.g., due to a 
scattering source. See Reference [5] for details of iteration procedures. 



NUMERICAL SOLUTION OF THE BOLTZMANN TRANSPORT EQUATION 191 

N = ( j p ] Ni + SAx)/aAx . (58) 

While this procedure works, and can be generalized to all geometries, it has sev- 
eral disadvantages. First, it stops only the negative fluxes and does nothing to 
improve possible oscillations. Second, it has only a pragmatic basis and there is 
no way to assess the accuracy or validity of the method. Below we describe a 
more useful method which is based on the physical properties of the transport 
equation. 

In two-dimensional (x, v) geometry with ,u = 1;2 . e, and 17 = Sz * e, , the 
equation corresponding to (55) is 

As written, the above equation is for ,u and 17 greater than zero and the difference 
assumptions are N = (1 - a)Ni + UN~+~ and N = (1 - b)Nj + bNj . In this 
geometry the appropriate equations for the other three combinations of f ,u, f 7 
can be obtained by interchanging Ni for Ni+i and Nj for Nj+l . Here the extrapo- 
lation process leads to more-serious difficulties than in plane geometry. Calcu- 
lating N,+i and Nj+l from (59) gives 

NC+, = (Ni[ I ,u 1 Ay - (1 - a) I 7 1 Ax/b - (1 - u)ailx&] 

+ I 7 I AxNjlb + SAxAy)laD , 
(6Oa) 

Nj+l = (NJ 17 j Ax - (1 - b) I ,u I Ay/b - (1 - b)aAxAy] 

+ I p I AyNi/u + SAxAy)/bD . 
(6Ob) 

Now, for some value of the ratio Q = / vAx/,uAy j, either the coefficient of Ni in 
(60a) or that of Nj in (60b) is negative (regardless of the size of aAxAy) provided 
a < 1 and b < 1. When a = b = 4, one of the coefficients is negative for all values 
of Q, that is, with the diamond difference relations, damped oscillations (at least) 
are propagated at all times. To understand the cause of this difficulty, it is nec- 
essary to remember that the particle flux at a point is due to the contributions 
from sources which lie along a straight line in the direction of particle motion. 
In Fig. 2 we have drawn two such characteristic lines, assuming that ,U and 7 
are greater than zero. It is clear that for this direction, Nj+r depends more strongly 
on Ni than it does on Nj and N as assumed by the diamond equations. The dif- 
ficulty in the extrapolations in (60) can thus be related to the “crossing” of char- 
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acteristic lines. This suggests a modified approach based on the method of char- 
acteristics. 

Consider the cell shown in Fig. 3, where, instead of centered edge fluxes we 
use corner fluxes. In this case we assume ,U and 71 to be greater than zero and that 

j+l 

i 

i i+l 

FIG. 2. 

4 AX * 

i i+l 

FIG. 3. 



NUMERICAL SOLUTION OF THE BOLTZMANN TRANSPORT EQUATION 193 

all the corner fluxes except Ni+r,i+l are known. We now determine Ni+l,j+l by 
using the integral form of the transport equation which can be written 

N(r, a) = N,(r - s,8, a)exp(- as,,) + /r exp(- as)S(r - $8, Q2)d.r. (61) 

In (61), N,, is a boundary value of the flux, and s,, is the distance back along the 
direction of particle motion from r to the system boundary. For the cell of Fig. 
3 the boundary flux is 3 and particles travel a distances s,, within the cell to reach 
x = x;+~ , y = yj+l . The projection of s,, onto the plane of the figure is s, times 
the sine of the angle between 51 and the z axis, i.e., s,,( 1 - E”)‘/” where 5 = CZ . e, . 
Since s,(l - Ez)l12 cos w  = ilx and (1 - C2)l12 cos O) = ,u, sO = Ax/p Applying 
this information to (61) we have 

N~+I,~+I = fl exP(- aAx/p) + I:‘” exp(- 0s)~ ds. (62) 

We now assume that S is constant over the cell so that 

Ni+l,j+l = flexp(- aAx/ I iu I> + X1 - eM- uAx/ I P I>l/a . (63) 

A further assumption is necessary to determine fi. Since Ni,j+l and Nij are as- 
sumed known, fi can be determined by linear interpolation which gives 

fl= ~Nij + (1 - Q)Ni,i+l 7 (64) 

where Q = 1 ~Ax/pAy 1 as before. In the event the characteristic intercepts the 
horizontal cell boundary in Fig. 3., s,, = Ay/v and fl is interpolated from the 
bottom corner fluxes. These equations determine Ni+l,j+l , but the cell-centered 
flux, N, is as yet unknown. To maintain particle conservation, N is determined 
from the appropriate form of Eq. (14) assuming that 

2Ni = Ni,j+l + Ni,j , 

2Ng+1 = Ni+l,j+l + N;+l,j, (65) 

2Nj = Ni,j + Ni+l,j . 

It is helpful to examine this approach in plane geometry. Then (62) becomes 

Ni+l = N, exp(- aAx/ I P I) + W - exp(- uAx/ I p l>>b . W) 

Substituting this expression in the appropriate form of (14) we find 
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where 

N = [S(r - u)/u + uNJt, (67) 

t = aAx/ j p 1, 24 = 1 - exp(- t). (68) 

When S/u is eliminated from (66) by using (67) the result is a difference scheme 

N = aNi+, + (I - a)Ni a = l/u - l/t, (69) 

with a assuming values in the range 4 I a 5 1 as a function of t. When ,U < 0, 
the appropriate equations are obtained by interchanging Ni and N,+, in (66), 
(67), and (69). 

In this instance, recourse to the analytic transport equation is productive; 
values of the weighting coefficient a are obtained from the physics of the Boltz- 
mann equation rather than by arbitrary selection. It is illuminating to examine 
(67) as the exponential is approximated. We find that for 

(70) 

Eq. (69) becomes the diamond difference relation with a = 4. Further, for 
exp(- t) w  l/(1 + t), the step-function equations are obtained. Thus, a sys- 
tematic means of producing difference relations is provided. In addition we see 
that the difficulty encountered in (54) is due to the approximation exp(- t) 
= [l - (1 - a)t](l + at)-‘, which can assume negative values. Therefore, a 
possibility which eliminates negative coefficients is to approximate the exponen- 
tial by, say, (70); but if t > 2, replace the exponential by zero. Table I shows the 

TABLE I 

SLAB CRITICAL HALF-THICKNESSES 

Number of spatial 
intervals 

Half-thickness 
in mean free paths 

2 9.7403 
5 5.9959 

10 5.7153 
20 5.6739 
40 5.6668 
80 5.6660 

exact [8] 5.6655 
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results of using this approximation to calculate slab critical half-thicknesses. 
For these calculations, the neutron secondaries ratio, c = (~0~ + a,)/~, is 1.02. 
Many other nonnegative approximations for the exponential are possible. 

In the computations of Table I double Gauss-Legendre quadrature [6] of 
order DP, was used. It is interesting to note that, for 5 spatial intervals, the expo- 
nential is replaced by zero in 12 of 16 directions, but yet the result is in error by 
less than 6%. Similar results are obtained for larger values of c. 

As has been pointed out, it is not possible to eliminate all negative coefficients 
in the extrapolations of Eq. (60) when weighted difference equations similar to 
those of (50) are used. However, it is possible to ameliorate the difficulty by uti- 
lizing information about the orientation of the characteristic. We illustrate such 
a method by using a variant of (66). Suppose that, in plane geometry, we only 
go half-way across the cell with (66), letting 

N = vNi + (1 - v)S/a v = exp(- t/2). (71) 

Then, using this value of N, we proceed the rest of the way by letting 

Ni+l = VN + (1 - v>S/a . (72) 

Subtracting these two equations we find a weighted difference scheme 

(1 + v)N = N;+r + VNi. (73) 

In two-dimensional (x, y) geometry, (73) is an appropriate difference scheme for 
x-extrapolation when the characteristic is horizontal, that is, when Q = vdx/,~.ly 
= 0 because 7 = 0. In this situation, with S constant in the cell we have 

Nj+l = N. (74) 

On the other hand, when Q = 1, the characteristics in Fig. 2 pass through Ni 
and Nj and we can write 

Ni+l = vNj + (1 - v)S/a , 

Nj, 1 = vNi + (1 - v)S/cr , 
(75) 

which is equivalent to 

N6+~ + vNi = Nj+l + vNj . (76) 

When e = 1 we must, as in this equation, have symmetry, i.e., similar difference 
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relations for N,+l and Nj+r extrapolations. This symmetry is not affected if’. 
instead of (76), we write 

Ni+I + vNi = (1 + v)N, 

Nj+I f  VNj = (1 + v)N. 
(77) 

For general Q in the range [0, 11, then, we can interpolate linearly between the 
equations for Q = 0 and those for I, = 1. This process gives (73) for all Ni, I 
extrapolations and 

(1 + ev)N = Nj+l + evNj. (78) 

With this scheme the coefficient of Ni is always positive in the extrapolation for 
Ni+l > and while the coefficient of Nj can sometimes be negative in the extrapola- 
tion for Nj+l , the negative coefficient is relatively small compared to the coeffi- 
cient of Ni in the same extrapolation. 

Clearly, many such variants are possible. One variation, more elementary than 
the one described above, has been tested. In the test problem, fluxes produced 
using (50) (with a = b = $) displayed anomalous oscillations, but fluxes calcu- 
lated using the variant were much smoothed. 

In the aforegoing we have by no means exhausted the possibilities for deriving 
difference relations. We have demonstrated the principles which are applicable, 
and have noted that characteristic schemes can be constructed without disturbing 
neutron conservation. We have also gained insight into difficulties occurring in 
presently used schemes, and obtained more meaningful recipes for lessening or 
preventing flux oscillations as a result of extrapolation. 
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